首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7093篇
  免费   1582篇
  国内免费   849篇
化学   5939篇
晶体学   295篇
力学   176篇
综合类   51篇
数学   48篇
物理学   3015篇
  2024年   2篇
  2023年   66篇
  2022年   123篇
  2021年   172篇
  2020年   244篇
  2019年   230篇
  2018年   203篇
  2017年   278篇
  2016年   413篇
  2015年   418篇
  2014年   517篇
  2013年   799篇
  2012年   638篇
  2011年   707篇
  2010年   529篇
  2009年   607篇
  2008年   563篇
  2007年   572篇
  2006年   492篇
  2005年   387篇
  2004年   333篇
  2003年   330篇
  2002年   172篇
  2001年   123篇
  2000年   83篇
  1999年   69篇
  1998年   91篇
  1997年   85篇
  1996年   59篇
  1995年   66篇
  1994年   35篇
  1993年   27篇
  1992年   13篇
  1991年   11篇
  1990年   14篇
  1989年   5篇
  1988年   9篇
  1987年   5篇
  1986年   5篇
  1985年   3篇
  1984年   4篇
  1983年   4篇
  1982年   8篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
  1975年   1篇
  1974年   2篇
排序方式: 共有9524条查询结果,搜索用时 15 毫秒
31.
Cyclic peptides with disc-shaped structures have emerged as potent building blocks for the preparation of new biomaterials in fields ranging from biological to material science. In this work, we analyze in depth the self-assembling properties of a new type of cyclic peptides based on the alternation of α-residues and cyclic δ-amino acids (α,δ-CPs). To examine the preferred stacking properties adopted by cyclic peptides bearing this type of amino acids, we carried out a synergistic in vitro/in silico approximation by using simple dimeric models and then extended to nanotubes. Although these new cyclic peptides (α,δ-CPs) can interact either in a parallel or antiparallel fashion, our results confirm that although the parallel β-sheet is more stable, it can be switched to the antiparallel stacking by choosing residues that can establish favorable cross-strand interactions. Moreover, the subsequent comparison by using the same methodology but applied to α,γ-CPs models, up to the moment assumed as antiparallel-like d,l -α-CPs, led to unforeseen conclusions that put into question preliminary conjectures about these systems. Surprisingly, they tend to adopt a parallel β-sheet directed by the skeleton interactions. These results imply a change of paradigm with respect to cyclic peptide designs that should be considered for dimers and nanotubes.  相似文献   
32.
Fluorescence–phosphorescence dual-emissive compounds are valuable tools for ratiometric luminescence sensing. Herein, it is reported that 2,5-bis(phenylsulfonyl)- and 2,5-bis[bis(4-methoxyphenyl)phosphinyl]-1,4-disiloxybenzenes exhibit dual emission with emission peaks that were easily identified without performing time-gated measurement. The disiloxybenzenes in powder simultaneously fluoresced and phosphoresced at 358–374 and 457–470 nm, respectively, under vacuum. The intensity ratios of the phosphorescence/fluorescence maxima of the disiloxybenzenes in powder and in a thin film of poly(methyl methacrylate) were sensitive to temperature and molecular oxygen, respectively. The plots of the relative intensity versus temperature or partial pressure of molecular oxygen were well fitted with calibration curves defined by an exponential approximation with excellent correlation coefficients R2 (0.9708–0.9921), demonstrating the high potential of the disiloxybenzenes as precious metal-free probes applicable to ratiometric luminescence sensing.  相似文献   
33.
Owing to their remarkable properties, single-walled carbon nanotube thin-film transistors (SWCNT-TFTs) are expected to be used in various flexible electronics applications. To fabricate SWCNT channel layers for TFTs, solution-based film formation on a self-assembled monolayer (SAM) covered with amino groups is commonly used. However, this method uses highly oxidized surfaces, which is not suitable for flexible polymeric substrates. In this work, a solution-based SWCNT film fabrication using methoxycarbonyl polyallylamine (Moc-PAA) is reported. The NH2-terminated surface of the cross-linked Moc-PAA layer enables the formation of highly dense and uniform SWCNT networks on both rigid and flexible substrates. TFTs that use the fabricated SWCNT thin film exhibited excellent performance with small variations. The presented simple method to access SWCNT thin film accelerates the realization of flexible nanoelectronics.  相似文献   
34.
The silene molecule (H2SiCH2; X1A1) has been synthesized under single collision conditions via the bimolecular gas phase reaction of ground state methylidyne radicals (CH) with silane (SiH4). Exploiting crossed molecular beams experiments augmented by high-level electronic structure calculations, the elementary reaction commenced on the doublet surface through a barrierless insertion of the methylidyne radical into a silicon-hydrogen bond forming the silylmethyl (CH2SiH3; X2A′) complex followed by hydrogen migration to the methylsilyl radical (SiH2CH3; X2A′). Both silylmethyl and methylsilyl intermediates undergo unimolecular hydrogen loss to silene (H2SiCH2; X1A1). The exploration of the elementary reaction of methylidyne with silane delivers a unique view at the widely uncharted reaction dynamics and isomerization processes of the carbon–silicon system in the gas phase, which are noticeably different from those of the isovalent carbon system thus contributing to our knowledge on carbon silicon bond couplings at the molecular level.  相似文献   
35.
A series of chemical vapor deposition (CVD) precursors have been synthesized by a single-step reaction of 1,1,3,3-tetramethylguanidine and a variety of silicon chlorides. The structures of the 1,1,3,3-tetramethylguanidinate-based compounds were verified by 1H NMR, 13C NMR, XPS, EI-MS, and elemental analysis. The thermal stability, transport behavior, and vapor pressures of these compounds were evaluated by simultaneous thermal analyses (STA). These compounds are highly stable and those in liquid form are very volatile. Silicon carbonitride (SiCN) thin films were prepared by using bis (tetramethylguanidine)-dimethyl-silane as the precursor in helicon wave plasma chemical vapor deposition (HWP-CVD). The properties of the films were investigated by SEM, AFM, and XPS. The results showed that the films have good uniformities, low friction coefficient, and high hardness, enabling the films for fabrication of semiconductor devices.  相似文献   
36.
37.
38.
The synthesis of modified neutral bis-NHI (NHI is N-heterocyclic imine) ligands and their application for the stabilization of tetryliumylidenes are reported. The ligands’ scaffolding consists of either saturated or methylated imidazoline backbones, and the bridge alternated from flexible ethylene to more rigid o-phenylene. Transmetalation reactivity of the cationic SnII compounds was tested towards LiAlH4 and IDipp→SiCl2 [IDipp is 1,3-bis(2,6-diisopropyl- phenyl)imidazol-2-ylidene] affording the respective aluminium and silicon complexes.  相似文献   
39.
We demonstrated a method to pattern catalyst via inkjet printing to grow SWNTs, using metal salt solutions as the inks and an ordinary office-use printer. We printed water solutions of cobalt acetate on hydrophilic Si substrates and grew high quality SWNT films.  相似文献   
40.
A novel N‐doped MoO 3 @SiC hollow nanosphere has been synthesized through two steps. Due to the first step, N‐doped MoO2@C nanosphere was synthesized using the hydrothermal method and in the second step, Si‐C bonds were formed through the low‐temperature magnesiothermic method and MoO 3 @SiC hollow nanosphere was produced. The prepared nanostructures were identified by various techniques such as IR, XRD, XPS, BET/BJH, SEM/EDS, and Raman spectroscopy. Results show that converting of C to SiC increase the surface area from 17 to 241 m2/g with remarkably decrease in pore diameter. Also, molybdenum is present in the form of MoO2 in carbon catalyst while during magnesiothermic process, it transfers to MoO3 form in the SiC catalyst. The synthesized products were employed as catalysts in oxidative desulfurization of model fuel. The results displayed that MoO 3 @SiC hollow nanostructure shows a superior catalytic activity (99.9%, 40 min) compared to C support (56%, 60 min). Furthermore, the recycling of MoO2@C catalyst shows a dramatic decrease even after the first run, while, SiC support exhibit higher stability during the stronger interaction between molybdenum catalyst and SiC support.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号